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Abstract. The Lagrangian star is a germ of the system({L1, . . . , Lk}, p̃) of Lagrangian
submanifolds in the symplectic manifold(M,ω). We investigate the symplectic group action
on Lagrangian stars and construct the basic invariants of such action. The Kashiwara signature
for 3-Lagrangian linear stars is generalized to the nonlinear case and the generalized contact
classes for Lagrangian stars are constructed. Finally, we obtain the generic classification of
simple normal forms of reduced Lagrangian stars with respect to a hypersurface.

1. Introduction

Let l1, l2, l3 be three Lagrangian subspaces in the symplectic vector space(M,ω). The
natural invariant of the group of symplectic transformations ofM, acting on the triplets of
Lagrangian subspaces, is a signature (Maslov index [6]) of the Kashiwara quadratic form
Q(x1, x2, x3) = ω(x1, x2)+ω(x2, x3)+ω(x3, x1) defined on the direct suml1⊕l2⊕l3. In this
paper we generalize this notion to the case of germs of triplets of Lagrangian submanifolds in
a symplectic manifold. The problem considered is related to the classification of Lagrangian
germs with respect to the subgroups of the group of symplectomorphisms. The natural
subgroups are induced byf -liftable (cf [1]) vector fieldsV on M such that d(V cω) = 0
and f is a smooth mapping between two manifolds,f : N2n → M2n. Using the action
of these groups one investigates the geometry of the maximal isotropic submanifolds in the
degenerated symplectic structures (cf [3, 7]) and show the direct way of generalizing the
Lagrangian singularities. Using the symplectic invariants of contact (cf [4, 5]), in section 2
we find the algebraic invariants of the triplets of Lagrangian submanifolds containing two
transversal submanifolds (basic Lagrangian star). We show that for the special class of
tangential Lagrangian stars these invariants are determined by the equivalence class of right
equivalence in the space of function-germs onRn. Classification of reduced Lagrangian
stars and basic Lagrangian stars, on a hypersurfaceH , under some genericity conditions is
given in section 3. As an extension of this result the reduced local models, in the case of
some non-transversal positions of Lagrangian stars with respect toH , are calculated.

2. Lagrangian stars

Let (M,ω) be a symplectic manifold. Let{L1, . . . , Lk} be a system of Lagrangian
submanifolds of(M,ω) intersecting at the common pointp̃ ∈ L1 ∩ · · · ∩ Lk.
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Definition 2.1. The germ of Lagrangian submanifolds({L1, . . . , Lk}, p̃) is called a
k-Lagrangian star at̃p. If k = 2 andL1 is transversal toL2 then the 2-Lagrangian star
({L1, L2}, p̃) is called the basic Lagrangian star. The 3-Lagrangian star we simply call the
Lagrangian star.

Let ({L1, . . . , Lk}, p̃) and ({L′1, . . . , L′k}, p̃) be two k-Lagrangian stars at̃p. Then
we say that they are symplectically equivalent (or equivalent) if there is a germ of
symplectomorphism8 : ((M,ω), p̃) → ((M,ω), p̃) such that8(Lj ) = Lij for some
permutationij of {1, . . . , k} and8(p̃) = p̃. The basic Lagrangian star forms a system
of local symplectic coordinates of(M,ω). There are Darboux coordinates aroundp̃ ∈ M
such that the basic Lagrangian star({L1, L2}, p̃) is symplectically equivalent to the one
defined byL1 = {(p, q) ∈ R2n, p = 0} and L2 = {(p, q) ∈ R2n, q = 0} with
(M,ω) ∼= (R2n,

∑n
i=1 dpi ∧ dqi).

To classify the Lagrangian stars we have to introduce the notion of contact equivalence
and subsequently the symplectic contact equivalence. LetX,L1, L2 be equi-dimensional
submanifolds ofM with p ∈ X ∩ L1 ∩ L2. Then we say thatL1 andL2 have the same
contact withX at p if there is a germ of diffeomorphismφ : (M, p)→ (M, p) such that
φ(L1) = L2 and φ(X) = X. Orbits of the group of these defined contact equivalences
are called the contact classes. Using this definition, ifL1, L2 have the same contact with
X at p then the local ringsR̄(X,Li) = EX/ρ1(X,Li), whereEX denotes the local ring of
smooth function-germs onX at p andρ1(X,Li) denotes the ideal of germs of functions on
M atp which vanish to first order onLi restricted toX, are isomorphic. The corresponding
isomorphism is induced by the pullback mapφ?, φ?f = f ◦ φ, for f ∈ EX. The converse
statement is true provided additionally dim̄R(X,Li) <∞.

The group of symplectomorphism-germs of((M,ω), p̃) is a subgroup of the group of
diffeomorphism-germs of(M, p̃) so that the contact data is a much more subtle invariant.
If X,L1, L2 are Lagrangian submanifolds then the natural symplectic contact data is a pair

(R̄s = EX/ρ2(X,Li), σi)

whereρ2(X,Li) denotes the ideal of germs of functions onM at p̃ which vanish to second
order onLi restricted toX, and the elementσi ∈ R̄s is naturally associated toLi . In each
caseσ is defined using a special cotangent bundle structure on a neighbourhoodM̃ of X
in M, such thatM̃ = T ?X andLi = graph dψi for some smooth functionsψi on X, σi is
the image ofψi in R̃s . Obviouslyσ is defined up to the choice of the special cotangent
bundle structureT ?X onM. The special symplectic structure is a quadruple(M,X, π, θ),
where(M,X, π) is a differentiable fibre bundle,θ is a 1-form onM, dθ = ω, such that
there exists a diffeomorphismα : M → T ?X such thatπ = πX ◦ α, θ = α?θX. Let L be
a Lagrangian submanifold inM and letθ1 andθ2 be 1-forms corresponding to two special
symplectic structures on(M,ω) with the same baseX. Then θ1|X = θ2|X = 0 and near
X we haveθ1 − θ2 = dH , whereH is a function onM which vanish to second order on
X. The corresponding generating functionsψθ1 andψθ2 of L in both special symplectic
structures are right equivalent with a diffeomorphismg : X→ X defined by the formula

g?ψθ2 = ψθ1 +
n∑

ij=1

hij (x, dψθ1)
∂ψθ1

∂xi

∂ψθ1

∂xj

whereH =∑n
ij=1 hij (x, p)pipj . From this consideration we easily see the geometric sense

of the local ring

R̄s = EX
/〈

∂ψ

∂x1
, . . . ,

∂ψ

∂xn

〉2
.
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Now we assume that the Lagrangian starS = ({L1, L2, L3}, p̃) contains the basic
Lagrangian star, say({L1, L2}, p̃). It is natural to define the pair of local ringsR = R1⊕R2

associated toS, being a local invariant of the group of germs of symplectomorphisms acting
on the space of Lagrangian stars (cf [4]). By considering germs of functions onM nearp̃
which vanish to second order onL3 and taking the restrictions of these functions toL1 (and
respectively toL2) we obtain an ideal11(L1, L3) (and respectively an ideal12(L2, L3)).

Definition 2.2. By the basic invariant of the Lagrangian starS we denote the pair of local
rings

R = R1⊕R2 = EL1/11(L1, L3)⊕ EL2/12(L2, L3)

where EL1 (respectivelyEL2) denotes the local ring of smooth function-germs onL1

(respectively onL2) nearp̃. We callS finite if dimRR <∞.

Now we have a natural realization ofR1⊕R2.

Proposition 2.1. For the considered Lagrangian starS

Ri = ELi
/〈

∂φi

∂x1
, . . . ,

∂φi

∂xn

〉2
where i = 1, 2 andφ1 and φ2 are the function germs associated with the realizations of
L3 in two different cotangent bundle structures overL1 andL2. The generating functions
φ1 andφ2 are defined up to an automorphism ofR1 andR2 induced by the corresponding
diffeomorphism-germsL1→ L1 andL2→ L2.

Proof. At first we recall some basic properties of Lagrangian submanifolds. IfX is
a Lagrangian submanifold in(M,ω) then in some neighbourhood ofX the symplectic
manifoldM is isomorphic toT ?X. We say thatT ?X is a special symplectic structure on
M. Let L be another Lagrangian submanifold in(M,ω), then around a pointp ∈ L ∩ X,
the submanifoldL is generated by the generating functionF(pI , qJ ) (cf [1]), i.e. in local
Darboux coordinates onT ?X, L is described by the equations

pJ = ∂F

∂qJ
(pI , qJ ) qI = − ∂F

∂pI
(pI , qJ ) (∗)

for someJ, I ⊂ {1, . . . , n}, I ∩ J = ∅, I ∪ J = {1, . . . , n}. If the second equation of
(∗) cannot be solved according topI (aroundp̃) then obviouslyL is vertical in directions
pI , so it cannot be generated by a function only onq. We see thatX is described by
{pi = 0, i = 1, . . . , n}, so the ideal1(X,L) does not change if we perturbL (make
it transversal to the fibrationT ?X → X) by adding the linear terms inp to the second
part of (∗) and making it solvable according topI . Thus we can represent the local ring
R = EX/1(X,L) by a generating function onX.

For the basic Lagrangian star({L1, L2}, p̃) we consider the special symplectic structures
aroundp̃, T ?L1

∼= M and T ?L2
∼= M. In both these structures the manifoldL3 can be

defined by generating functions using the corresponding Liouville forms

θLi |L3 = dφ̃i i = 1, 2.

We see that the ideals1i(Li, L3) describe the order of contact ofL3 to Li , (cf [4]) so by
the small deformation ofL3 making it transversal to the fibrationsT ?Li → Li we get the
generating functionsφi of L3 which may be defined onLi keeping1i unchanged. These
deformations may be achieved by changing the canonical 1-forms associated to the two
cotangent bundle structures ofT ?Li . �
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If the following two Lagrangian stars

S = ({L1, L2, L3}, p̃), S ′ = ({L′1, L′2, L′3}, p̃)
are symplectically equivalent then their corresponding basic invariantsR1⊕R2 andR′1⊕R′2
are isomorphic. Now we would like to show that under certain conditions the converse is
true.

Let the basic Lagrangian star ofS be in Darboux form, thenL3 is generated by a
generating familyFq(pI , q) = S3(pI , qJ )+pIqI in T ?L1 and byFp(qJ , p) = S3(pI , qJ )−
pJqJ in T ?L2, (which is the Legendre transform ofFq), for someJ, I ⊂ {1, . . . , n},
I ∪ J = {1, . . . , n} andI ∩ J = ∅. We chooseS3 such that

∂2S3

∂pI ∂pI
(0) = 0.

This condition says thatL3 projects alongp with the kernel parametrized bypI . In usual
Lagrange equivalency preserving the fibration(p, q) → q we reduceS3 to the form such
that S3(pI , qJ ) ∈ m3

IJ . However, in this case we have to preserve the basic Lagrangian
star ({L1, L2}, 0), whereL1 = {(p, q) ∈ R2n, p = 0} andL2 = {(p, q) ∈ R2n, q = 0}, so
that the quadratic terms in someq-variables cannot be reduced. Thus we can writeS3 in
the following final form

S3(pI , qJ ) = S̃(pI , qJ )+Q(qJ ′)
whereJ ′ ⊂ J , S̃ ∈ m3

IJ (mIJ is the maximal ideal of smooth function-germs depending
on pI , qJ -variables,p̃ we assume to be 0 in these local coordinates), andQ(qJ ′) is a non-
degenerated quadratic form ofqJ ′ -variables, #J ′ = l. Now we can deduce the following
result.

Proposition 2.2.Let S andS ′ be two finite Lagrangian stars containing the basic Lagrangian
star, thenS andS ′ are symplectically equivalent iff

(1) the quadratic formsQ andQ′ are equivalent, and
(2) the basic invariantsR1 ⊕R2 andR′1 ⊕R′2 are isomorphic and the corresponding

isomorphismsγ1 andγ2 send the images ofφ1 andφ2 in R1 andR2 into the images ofφ′1
andφ′2 in R′1 andR′2, respectively.

The basic invariant of the Lagrangian starS is aC∞-invariant, i.e. an equivalence of
Lagrangian stars is not necessarily symplectic. Now we see that the following data

(R,Q, φ1, φ2)

form the complete symplectic invariant for Lagrangian stars under the symplectic group
equivalence.

Remark 2.1. If L3 is generated, in the basic Lagrangian star byS3(pI , qJ ), I ∪ J =
{1, . . . , n}, I ∩J = ∅ and∂2S3(0)/∂pI ∂pI = 0, then the class ofS is preserved if we apply
the right equivalence group toS3 preserving{pI } and {qJ } spaces separately. There is a
natural question, what does the relation between the local ring

EpI ,qJ
/〈
− ∂S3

∂pI
,
∂S3

∂qJ

〉2
and the basic symplectic invariant of the Lagrangian starS look like?
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Now we consider the special case. We assumeS contains the basic Lagrangian
star. We callS the tangential star if there are two Lagrangian germs inS tangent
at p̃. If S is tangential then there exists local Darboux coordinates atp̃ in which
L1 = {(p, q) ∈ R2n : p = 0}, L2 = {(p, q) ∈ R2n : q = 0} andL3 is generated by a
generating functionq → F(q), F ′(0) = 0 andF ′′(0) = 0. The basic invariant for the
tangential Lagrangian stars is reduced to the local ring

R = Eq
/〈

∂F

∂q1
, . . . ,

∂F

∂qn

〉2
.

Symplectic equivalence of the tangential Lagrangian stars sayS and S ′, is equivalent to
right equivalence of their generating functionsF and F ′. So the equivalence classes of
contact are determined mainly by theAk,Dk andEk classification of singularities (cf [1]).

Remark 2.2. If Q has a maximal rank then the main symplectic invariant of the Lagrangian
star is a signature ofQ. It is a signature (Maslov index) of the Kashiwara quadratic form
(cf [6])

ω(x1, x2)+ ω(x2, x3)+ ω(x3, x1)

defined on the tangent (at̃p) Lagrangian starl1 ⊕ l2 ⊕ l3. We denote this signature
by τ(l1, l2, l3). This is a symplectic invariant for any Lagrangian star, not only if
l1 ∩ l2 = l2 ∩ l3 = l3 ∩ l1 = {0}. In general we can write

τ(l1, l2, l3) = n+ dim(l1 ∩ l2)+ dim(l2 ∩ l3)+ dim(l3 ∩ l1)(mod 2).

The basic symplectic invariant introduced here is a natural generalization ofτ for the
nonlinearizable Lagrangian stars. Generalization of this invariant for a Lagrangian star of
four Lagrangian submanifolds goes through the composed 3-Lagrangian stars (cf [6]).

3. Reduction of Lagrangian stars

As far as the basic symplectic stars are all symplectically equivalent there is a natural
question how they pass through the reduction on a hypersurface or a general co-isotropic
submanifold? First, we consider the reduction of co-dimension 1, which is the very special
reduction along the integral curves of the Hamiltonian system with the Hamiltonian function
defining the hypersurface as its zero-level set.

LetH be a hypersurface in(M,ω). We consider the basic stars({L1, L2}, p̃) transversal
to H at p̃. Let πH : H → (M̃, ω̃) be the projection along bicharacteristics into the reduced
symplectic manifoldM̃ and ω̃ is the corresponding reduced symplectic formπ?H ω̃ = ω|H .
We define the reduced star as follows

({Lr1, Lr2}, p̃r )
whereLri = πH(H ∩ Li) and p̃r = πH(p̃).

Now we pass to the classification of reduced basic stars according to the
symplectomorphisms of(M,ω) and(M̃, ω̃) preserving the projectionπH .

Proposition 3.1. Any simple, reduced basic Lagrangian star can be written in one form
from the following normal forms

Ak : ({Lr1, Lr2}, 0)
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where

Lr1 = {(q, p) ∈ M̃ : pi = 0, i = 1, . . . , n− 1}
Lr2 = {(q, p) ∈ M̃ : p1 = ∂S/∂q1(q1, p2, . . . , pn−1),

qi = −∂S/∂pi(q1, p2, . . . , pn−1), i = 2, . . . , n− 1}
and

S(q1, p2, . . . , pn−1) = ±qk+1
1 + qk−1

1 pk−1+ · · · + q2
1p2

for 26 k 6 n− 1 andA1 with Lr2 = {(q, p) ∈ M̃ : qi = 0, i = 1, . . . , n− 1}.

Proof. Now we have to classify the triplets({L1, L2, H }, p̃) in (R2n, ω), whereL1, L2

and H are mutually transversal at̃p ∈ L1 ∩ L2 ∩ H . We find Darboux coordinates
{x1, . . . xn, y1, . . . , yn} in which L1 andH may be written in the following normal form in
R2n = T ?L1

L1 = {y1 = 0, . . . , yn = 0} H = {x1 = 0}.
ThenL2 can be written by the generating functiony → S(y), such that

d

(
∂S

∂y1

)
(0) 6= 0

because of transversality ofL1 to L2 and L2 to H . Now we need to use the
symplectomorphisms ofT ?L1 preserving(L1 ∪ H, 0) and reduceL2 to its simple normal
form. So we need the groupGL1∪H of germs of symplectomorphisms which preserve the
fibration (x, y)→ y and the hypersurfaceH = {x1 = 0}. Every element8 of this group
can be defined as a lifting of a diffeomorphismφ : Rn 3 y → φ(y) ∈ Rn, which preserve
the fibration over(y2, . . . , yn), i.e. y → ȳ = (y2, . . . , yn) with adding the gradient of a
function f which depends on̄y

8(x, y) = ((φ?)−1(y)x + df (ȳ), φ(y)).

Using this group we can reduce the functionS to the form

S(y) = y1S̃(y).

Then using the theorem on versal deformations (cf [8]) we reduce it successively to the
form

L2 : S(y) = ±yk+1
1 + yk−1

1 yk + · · · + y1y2 for 16 k 6 n.
At first we consider the case whenk = 1. In this caseS(y) = ±y2

1 and the reduction
equations{x1 = 0, y1 = 0} give us the reduced Lagrangian germ in the form

π{x1=0}(L2) = {(q, p) ∈ M̃ : qi = 0, i = 1, . . . , n− 1}
which corresponds to the caseA1 in the proposition.

Now we consider the case whenk > 2. Taking the imageπ{x1=0}(L2) we obtain the
following equations

−x1 = ∂S

∂y1
(y) = ±(k + 1)yk1 + (k − 1)yk−2

1 yk + · · · + 2y1y3+ y2 = 0

−x2 = ∂S

∂y2
(y) = y1, . . . , −xk = ∂S

∂yk
(y) = yk−1

1

−xk+1 = ∂S

∂yk+1
(y) = 0, . . . , −xn = ∂S

∂yn
(y) = 0.
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From the first equation we derive

−y2 = ±(k + 1)yk1 + (k − 1)yk−2
1 yk + · · · + 2y1y3

and renumerating the corresponding Darboux coordinates

p1 = −y2, p2 = y3, . . . , pn−1 = yn
q1 = −x2, q2 = x3, . . . , qn−1 = xn

we rewrite the equations forπ{x1=0}(L2) in the form

p1 = ∂S̄

∂q1
= ±(k + 1)qk1 + (k − 1)qk−2

1 pk−1+ · · · + 2q1p2

q2 = − ∂S̄
∂p2
= −q2

1, . . . , qk−1 = − ∂S̄

∂pk−1
= −qk−1

1

qk = − ∂S̄
∂pk
= 0, . . . , qn−1 = − ∂S̄

∂pn−1
= 0

with the generating function

S̄(q1, p1, . . . , pn−1) = ±qk+1
1 + qk−1

1 pk−1+ · · · + q2
1p2

for the reduced Lagrangian germLr2. �

Remark 3.1.We see that the only stable case of the triplet({L1, L2, H }, p̃) is equivalent
to the local model of typeA1 for the submanifoldL2 and that it corresponds to the basic
reduced star which is the basic star in the reduced symplectic space.

Let S = ({L1, L2, L3}, p̃) be a Lagrangian star and letH be a hypersurface-germ atp̃.

Proposition 3.2.We assume that the Lagrangian starS contains the star, say({L1, L2}, p̃)
which is of type A1 (stable) with respect to(H, p̃). Then in the transversal case
i.e. L3 is transversal toL1, L2, andH , the typical reduced stars({Lr1, Lr2, Lr3}, p̃r ) are
classified by the following normal forms:({Lr1, Lr2}, p̃r ) is a basic Lagrangian star in
M̃ ≡ (R2(n−1), ω =∑n−1

i=1 dyi ∧ dxi) andLr3 is generated by the following Morse family

F(λ, y) = λk+1+
k−1∑
i=1

λk−iyi + φ(y1, . . . , yk−1)± y2
k ± · · · ± y2

n−1

whereφ ∈m2
y1,...,yk−1

.

Proof. By proposition 3.1 we can reduce({L1, L2, H }, p̃) to the following normal form
in p̃

L1 : y1 = 0, . . . , yn = 0

L2 : x1 = ±2y1, x2 = 0, . . . , xn = 0

H : x1 = 0.

By transversality assumptionsL3 can be generated by the generating functiony → F(y)

such that

d

(
∂F

∂y1

)
(0) 6= 0.
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By the reduction projectionπH we get

Lr1 : y2 = 0, . . . , yn = 0

Lr2 : x2 = 0, . . . , xn = 0

Lr3 : x2 = ∂F

∂y2
(y1, ȳ), . . . , xn = ∂F

∂yn
(y1, ȳ) 0= ∂F

∂y1
(y1, ȳ)

whereȳ = (y2, . . . , yn).
Any liftable (throughπH ) equivalence of({Lr1, Lr2, Lr3}, 0) is determined by anR-

equivalence of Morse familiesF(y1, ȳ), where the diffeomorphism of̄y is preserving zero.
By reorderingȳ, treatingy1 as a Morse parameter,λ and applying the group of equivalences
we obtain the prenormal forms of proposition 3.2. �

Now we consider the situation when the basic Lagrangian star({L1, L2}, p̃) is not
transversal to the hypersurface(H, p̃). In this case at least one of the two Lagrangian
germsL1, L2 have to be transversal toH . We assume that it isL1. Then we have the
following result.

Proposition 3.3. If the basic Lagrangian star({L1, L2}, p̃) is not transversal to(H, p̃)
then the generic reduced Lagrangian star({Lr1, Lr2}, p̃r ) can be written in one form from
the following normal forms:Lr1 : y1 = 0, . . . , yn−1 = 0, Lr2 : is generated by the following
Morse family

S(λ, ȳ) = ±λk +
k−3∑
i=1

yiλ
k−i−1+

(
g(y1, . . . , yk−3)±

n∑
i=k−2

y2
i

)
λ

wherek = dimR Eλ/1(S(λ, 0))+ 16 n+ 2, g ∈m2
y1,...,yk−3

−m3
y1,...,yk−3

and1(S(λ, 0)) is
an ideal inEλ generated by∂S/∂λ (λ, 0).

Proof. If L1 is transversal toH then we obtain the Darboux coordinates such that

L1 : y1 = 0, . . . , yn = 0 H : x1 = 0.

BecauseL2 is transversal toL1, thenL2 may be generated in the form

xi = − ∂S
∂yi

(y) i = 1, . . . , n

where d(∂S/∂y1)|0 = 0. By the equivalence group of symplectomorphisms preserving
(H ∪ L1, 0) we can reduceS to the form (cf [2])

S(y) = ±yk1 +
k−2∑
i=2

yiy
k−i
1 +

(
g(y2, . . . , yk−2)±

n∑
i=k−1

y2
i

)
y1

whereg is a smooth function (functional invariant) andg ∈ m2
y2,...,yk−2

. By the reduction
projection πH and reordering the variables ‘y’ we get the corresponding Morse family
S(λ, ȳ), ȳ = (y1, . . . , yn−1), generatingLr2. �

We see that the reduction of the basic Lagrangian star, which is not transversal toH

is no more basic. Moreover it is not even smooth. The only simple model of the reduced
Lagrangian star in the non-transversal case is the one generated by the following Morse
family

Lr2 : S(λ, y1, y2) = λ3± y2
1λ

which is the singular Lagrangian set.
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